Structure Reports

Online
ISSN 1600-5368

Mohamed Osman Awaleh,* Antonella Badia and François Brisse

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Correspondence e-mail:
moawaleh2000@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.068$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,6-Bis(phenylsulfanyl)hexane

The title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~S}_{2}$ (or L^{6}), crystallizes with two half-molecules in the asymmetric unit and each independent molecule lies about a crystallographic center of symmetry. The aliphatic segment of this ligand is in an all-trans conformation.

Received 23 June 2005
Accepted 28 June 2005
Online 9 July 2005

Comment

Linear bifunctional ligands are usually used as building blocks for the construction of metal-organic framework materials (MOF) (Carlucci et al., 2002). Sulfur, being a soft base, has good ability to coordinate to an Ag atom which is a soft acid. As the dithiolate ligand affords two coordination sites to metal centers, supramolecular architectures may be achieved (Black et al., 1995; Bu et al., 2002). This flexible ligand was synthesized in order to help understand the formation of supramolecular networks, which is affected by many factors, such as the type of solvents, the counter-anions, the metal-to-ligand ratio, the metal coordination and the ligand flexibility [see, for example, Withersby et al. (1997, 1999), Noro et al. (2002), Blake et al. (1999)]. We have recently determined the stuctures of the analagous compounds L^{10} and L^{2} (Awaleh et al., 2005a,b). We report here the structural characterization of 1,6-bis(phenylsulfanyl)hexane $\left(L^{6}\right)$.

(I)
L^{6} crystallizes with two half-molecules in the asymmetric unit. A view of one of the molecules is shown in Fig. 1. Each of the two molecules has a center of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond, viz. $\mathrm{C} 19-\mathrm{C} 19^{\mathrm{i}}$ [symmetry code: (i)

Figure 1
View of one molecule of L^{6}, showing the atom-numbering scheme. Probability displacement ellipsoids are shown at the 50% level. The H atoms have been omitted. The unlabeled part of the molecule is related by the symmetry code ($-x,-y+1,-z$).

Figure 2
The crystal packing of L^{6}, viewed along the b axis. H atoms have been omitted.
$-x, 1-y,-z]$ and $\mathrm{C} 29-\mathrm{C} 29^{\mathrm{ii}}$ [symmetry code: (ii) $1-x,-y, 2-z]$. The torsion angles in the aliphatic segment of L^{6} are all trans, indicating that the molecules are in the fully extended conformation (Table 1). The dihedral angles between the aromatic groups and the corresponding S -$\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{S}$ planes are $19.4(2)^{\circ}$ for both molecules. The phenyl groups of neighbouring molecules form a $61.5(1)^{\circ}$ dihedral angle. The bond distances and angles in L^{6} are in the normal range (Table 1). The crystal packing of L^{6} is depicted in Fig. 2. There are no significant π-stacking interactions in the crystal structure.

Experimental

The title compound, L^{6}, was synthesized according to a published procedure (Hartley et al., 1979). L^{6} was found to be pure from NMR in acetone- $d_{6}\left({ }^{1} \mathrm{H}\right)$. The compound was obtained as a crystalline powder from which platelet-shaped crystals were gathered. Several crystals were examined, but only one was of barely suitable quality for X-ray analysis (yield: 87\%). Analysis found: C 71.43, H 7.32\%; calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~S}_{2}$: C 71.47, H 7.33\%. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): δ
$1.46\left[q t, 4 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\right], 1.63[q t, 4 \mathrm{H},-\mathrm{S}-$ $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{S}-\right], 2.95\left[t, 4 \mathrm{H},-\mathrm{S}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{S}-\right], 7.14-7.34\left(m, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\right.$).

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~S}_{2}$
$M_{r}=302.48$
Triclinic, $P \overline{1}$
$a=5.627$ (2) A
$b=7.862$ (3) \AA
$c=18.486$ (6) \AA
$\alpha=94.55$ (3) ${ }^{\circ}$
$\beta=91.36(3)^{\circ}$
$\gamma=90.46(3)^{\circ}$
$V=815.0(5) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.233 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=20.0-25.0^{\circ}$
$\mu=2.84 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Platelet, colorless
$0.23 \times 0.15 \times 0.02 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

$$
\begin{aligned}
& R_{\text {int }}=0.059 \\
& \theta_{\max }=69.8^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-9 \rightarrow 9 \\
& l=-22 \rightarrow 22 \\
& 5 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0003 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.6 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3} \AA^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

S1-C11	$1.764(3)$	$\mathrm{S} 2-\mathrm{C} 27$	$1.798(3)$
$\mathrm{S} 1-\mathrm{C} 17$	$1.802(3)$	$\mathrm{C} 19-\mathrm{C} 19^{\mathrm{i}}$	$1.524(6)$
$\mathrm{S} 2-\mathrm{C} 21$	$1.766(3)$	$\mathrm{C} 29-\mathrm{C} 29^{\mathrm{ii}}$	$1.512(6)$
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 17$	$104.78(17)$	$\mathrm{C} 21-\mathrm{S} 2-\mathrm{C} 27$	$105.51(17)$
S1-C17-C18-C19	$-179.4(2)$	$\mathrm{S} 2-\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29$	$179.7(2)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 19^{\mathrm{i}}$	$179.9(4)$	$\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29-\mathrm{C} 29^{\mathrm{ii}}$	$-179.7(4)$

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y,-z+2$.
The poor quality of the crystal and the fact that only 41% of the measured reflections have $I>2 \sigma(I)$ account for the low S value. H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and were included in the refinement in the riding-model approximation; their displacement parameters were set at $1.2 U_{\text {eq }}$ of the parent C atoms. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: local Program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: $U d M X$ (Maris, 2004).

Financial support from the Natural Sciences and Engineering Research Council of Canada (to FB) and a graduate scholarship from the Programme Canadien de Bourse de la Francophonie and the Organization International de la Francophonie (to MOA) are gratefully acknowledged.

organic papers

References

Awaleh, M. O., Badia, A. \& Brisse, F. (2005a). Acta Cryst. E61, o2473o2475.
Awaleh, M. O., Badia, A. \& Brisse, F. (2005b). Acta Cryst. E61, o2479o2481.
Black, J. R., Champness, N. R., Levason, W. \& Reid, G. (1995). J. Chem. Soc. Dalton Trans. pp. 3439-3445.
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. \& Schroder, M. (1999). Coord. Chem. Rev. 183, 117-138.
Bruker (1997). SHELXTL. Release 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Chen, W., Hou, W. F., Du, M., Zhang, R. H. \& Brisse, F. (2002). Inorg. Chem. 41, 3477-3482.

Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2002). CrystEngComm, 4, 413-425.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. \& McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.

Maris, T. (2004). UdMX. Université de Montréal, Canada.
Noro, S. I., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. \& Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.
Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Li, W. S. \& Schroder, M. (1999). Inorg. Chem. 38, 2259-2266.
Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. \& Schroder, M. (1997). Angew. Chem. Int. Ed. 36, 2327-2329.

